Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 11(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35205164

RESUMO

The complex interplay of a pathogen with its virulence and fitness factors, the host's immune response, and the endogenous microbiome determine the course and outcome of gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an increased risk of developing severe systemic infections, especially in dysbiotic or immunocompromised individuals. We developed a mechanistic computational model that calculates and simulates such scenarios, based on an ordinary differential equation system, to explain the bacterial population dynamics during gastrointestinal infection. For implementing the model and estimating its parameters, oral mouse infection experiments with the enteropathogen, Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics and is intended to reflect scenarios where colonization resistance, mediated by the endogenous microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from experimental mouse infections, we can justify our model setup and deduce cues for further model improvement. The model is freely available, in SBML format, from the BioModels Database under the accession number MODEL2002070001.

2.
Front Microbiol ; 12: 628879, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708185

RESUMO

The BAM complex in Escherichia coli is composed of five proteins, BamA-E. BamA and BamD are essential for cell viability and are required for the assembly of ß-barrel outer membrane proteins. Consequently, BamA and BamD are indispensable for secretion via the classical autotransporter pathway (Type 5a secretion). In contrast, BamB, BamC, and BamE are not required for the biogenesis of classical autotransporters. Recently, we demonstrated that TamA, a homologue of BamA, and its partner protein TamB, were required for efficient secretion of proteins via the classical autotransporter pathway. The trimeric autotransporters are a subset of the Type 5-secreted proteins. Unlike the classical autotransporters, they are composed of three identical polypeptide chains which must be assembled together to allow secretion of their cognate passenger domains. In contrast to the classical autotransporters, the role of the Bam and Tam complex components in the biogenesis of the trimeric autotransporters has not been investigated fully. Here, using the Salmonella enterica trimeric autotransporter SadA and the structurally similar YadA protein of Yersinia spp., we identify the importance of BamA and BamD in the biogenesis of the trimeric autotransporters and reveal that BamB, BamC, BamE, TamA and TamB are not required for secretion of functional passenger domain on the cell surface. IMPORTANCE: The secretion of trimeric autotransporters (TAA's) has yet to be fully understood. Here we show that efficient secretion of TAAs requires the BamA and D proteins, but does not require BamB, C or E. In contrast to classical autotransporter secretion, neither trimeric autotransporter tested required TamA or B proteins to be functionally secreted.

3.
J Innate Immun ; 9(1): 33-51, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27798934

RESUMO

Complement resistance is an important virulence trait of Yersinia enterocolitica (Ye). The predominant virulence factor expressed by Ye is Yersinia adhesin A (YadA), which enables bacterial attachment to host cells and extracellular matrix and additionally allows the acquisition of soluble serum factors. The serum glycoprotein vitronectin (Vn) acts as an inhibitory regulator of the terminal complement complex by inhibiting the lytic pore formation. Here, we show YadA-mediated direct interaction of Ye with Vn and investigated the role of this Vn binding during mouse infection in vivo. Using different Yersinia strains, we identified a short stretch in the YadA head domain of Ye O:9 E40, similar to the 'uptake region' of Y. pseudotuberculosis YPIII YadA, as crucial for efficient Vn binding. Using recombinant fragments of Vn, we found the C-terminal part of Vn, including heparin-binding domain 3, to be responsible for binding to YadA. Moreover, we found that Vn bound to the bacterial surface is still functionally active and thus inhibits C5b-9 formation. In a mouse infection model, we demonstrate that Vn reduces complement-mediated killing of Ye O:9 E40 and, thus, improved bacterial survival. Taken together, these findings show that YadA-mediated Vn binding influences Ye pathogenesis.


Assuntos
Adesinas Bacterianas/metabolismo , Vitronectina/metabolismo , Yersiniose/imunologia , Yersinia enterocolitica/fisiologia , Animais , Bacteriólise , Proteínas do Sistema Complemento/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Domínios Proteicos/genética , Especificidade da Espécie , Virulência , Vitronectina/genética , Yersinia enterocolitica/patogenicidade
4.
Int J Med Microbiol ; 305(2): 252-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25604505

RESUMO

The trimeric autotransporter adhesin Yersinia adhesin A is the prototype of the type Vc secretion systems. It is expressed by enteropathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis strains, but not by Yersinia pestis. A characteristic trait of YadA is its modular composition and trimeric nature. YadA consists of an N-terminal passenger domain which is exposed on the bacterial cell surface. The translocation of this passenger onto the surface is facilitated by a C-terminal ß-barrel domain which concomitantly anchors YadA into the outer membrane with three YadA monomers contributing to the formation of a single ß-barrel. In Y. enterocolitica, but not Y. pseudotuberculosis, YadA is a decisive virulence factor and its deletion renders the bacteria virtually avirulent in mouse models of infection. This striking importance of YadA in infection may derive from its manifold functions in host cell interaction. Presumably the most important function of YadA is that it mediates adhesion to extracellular matrix components of eukaryotic host cells. Only tight adhesion allows for the injection of "anti-host" effector proteins via a type III secretion system into the host cell cytosol. These effector proteins enable Yersinia to subvert the host immune system in order to replicate and establish infection. YadA is also essential for the survival of Y. enterocolitica upon contact with serum, an important immune-evasion mechanism called serum resistance. To this end, YadA interacts with several components of the host complement system, the first line of immune defense. This review will summarize recent findings about the structure and biogenesis of YadA and its interactions with the host complement system.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Sistemas de Secreção Bacterianos , Fatores de Virulência/metabolismo , Yersinia enterocolitica/fisiologia , Yersinia pseudotuberculosis/fisiologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Virulência , Yersinia enterocolitica/crescimento & desenvolvimento , Yersinia enterocolitica/metabolismo , Yersinia pseudotuberculosis/metabolismo
5.
J Biol Chem ; 290(3): 1837-49, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25488660

RESUMO

Autotransporter proteins comprise a large family of virulence factors that consist of a ß-barrel translocation unit and an extracellular effector or passenger domain. The ß-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain of the inverse autotransporter intimin, we generated a mutant defective in autotransport. Using this stalled mutant, we could show that (i) at the time point of stalling, the ß-barrel appears folded; (ii) the stalled autotransporter is associated with BamA and SurA; (iii) the stalled intimin is decorated with large amounts of SurA; (iv) the stalled autotransporter is not degraded by periplasmic proteases; and (v) inverse autotransporter passenger domains are translocated by a hairpin mechanism. Our results suggest a function for the BAM complex not only in insertion and folding of the ß-barrel but also for passenger translocation.


Assuntos
Adesinas Bacterianas/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Adesinas Bacterianas/química , Transporte Biológico , Membrana Celular/metabolismo , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , Epitopos/química , Proteínas de Escherichia coli/química , Células HeLa , Humanos , Microscopia de Fluorescência , Chaperonas Moleculares/química , Mutagênese Sítio-Dirigida , Mutação , Peptídeo Hidrolases/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície
6.
J Immunol ; 189(10): 4900-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23071281

RESUMO

Yersinia adhesin A (YadA) is a major virulence factor of Yersinia enterocolitica. YadA mediates host cell binding and autoaggregation and protects the pathogen from killing by the complement system. Previous studies demonstrated that YadA is the most important single factor mediating serum resistance of Y. enterocolitica, presumably by binding C4b binding protein (C4BP) and factor H, which are both complement inhibitors. Factor H acts as a cofactor for factor I-mediated cleavage of C3b into the inactive form iC3b and thus prevents formation of inflammatory effector compounds and the terminal complement complex. In this study, we challenged the current direct binding model of factor H to YadA and show that Y. enterocolitica YadA recruits C3b and iC3b directly, without the need of an active complement cascade or additional serum factors. Enhanced binding of C3b does not decrease survival of YadA-expressing Yersiniae because C3b becomes readily inactivated by factor H and factor I. Binding of factor H to YadA is greatly reduced in the absence of C3. Experiments using Yersinia lacking YadA or expressing YadA with reduced trimeric stability clearly demonstrate that both the presence and full trimeric stability of YadA are essential for complement resistance. A novel mechanism of factor H binding is presented in which YadA exploits recruitment of C3b or iC3b to attract large amounts of factor H. As a consequence, formation of the terminal complement complex is limited and bacterial survival is enhanced. These findings add a new aspect of how Y. enterocolitica effectively evades the host complement system.


Assuntos
Adesinas Bacterianas/imunologia , Ativação do Complemento , Complemento C3/imunologia , Evasão da Resposta Imune , Yersinia enterocolitica/imunologia , Adesinas Bacterianas/genética , Complemento C3/antagonistas & inibidores , Complemento C3/genética , Proteína de Ligação ao Complemento C4b , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/genética , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Antígenos de Histocompatibilidade/genética , Antígenos de Histocompatibilidade/imunologia , Humanos , Ligação Proteica , Yersinia enterocolitica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...